To continue this study we need accurate laboratory measurements of atomic transition frequencies. These are compared with frequencies in quasar absorption spectra to search for variations in α.

The required wavelengths are for E1 transitions to the ground state in a variety of atoms and ions. The wavelengths range from around 900 - 6000 Å, and require an accuracy of better than 10^{-4} Å.

CALCULATIONS

The difference between the transition frequencies in quasar absorption spectra (ν_{q}) and in the laboratory (ν_{l}) is related to the difference in α by $\Delta \nu = \nu_{q} - \nu_{l} = (\nu_{q} / \nu_{l})^{2} - 1$. The relative energy shifts, $\Delta \nu / \nu$, are calculated using atomic physics codes.

- Atomic energy levels are calculated in a first approximation using relativistic Hartree-Fock, usually in the $V(N-1)$ approximation.
- Higher order effects are taken into account using many-body perturbation theory for single-valence-electron systems, or configuration interaction for many-valence-electron systems. Both methods assume a frozen Hartree-Fock core.
- We first obtain “dressed” relativistic Hartree-Fock orbitals that include the rescaled isotope shift operator.

The energy is then calculated using many-body perturbation theory for single-valence-electron systems, or configuration interaction for many-valence-electron systems. The field shift comes from the changed charge distribution in the nucleus. We modify the nuclear potential directly to include it, with a scaling parameter ξ.

References