• Academic
Staff Record
Scientia Professor

Alex Hamilton

[p]: 

+61(2) 9385 5736

[f]: 

+61(2) 9385 6060

Education: 

  • B.Sc. Imperial College, London 1988.
  • Ph.D. Cambridge, UK 1993.
  • EPSRC Research Fellow & Research Associate, University of Cambridge, 1993-1999.

Research Interests: 

The continual demand for faster, smaller, and more efficient integrated circuits ("chips") is pushing technology such that individual components are now the size of large molecules, and future advances in computational power will exploit quantum, rather than classical physics.

I study the fundamental electronic properties of state-of-the art nanoscale semiconductor devices, where the device size becomes comparable to the electron's wavelength, so that the electrons behave more as waves than as particles. In these regime devices classical physics breaks down, and a myriad of new quantum effects determine how the device operates. In particular we investigate devices in which the quantum mechanical spin of the electron, rather than simply it's charge, determines how the device operates. In order to develop these nanoscale devices I am interested in all aspects of semiconductor device nanofabrication, and developing new technologies for fabricating atomically precise electronic devices. In particular our research group is a world leader in the design and fabrication of p-type (hole based) nanostructures, where interaction effects are and spin-orbit coupling are strong. It is interesting that although half of all transitors on an integrated circuit use holes rather than electrons, there is not even a basic theory of the quantum properties of holes in nanostructures!

Research interests include (see our group website for further details):

  • Semiconductor nanofabrication and electronic transport in one-dimensional quantum wires and zero-dimensional quantum dots (link).
  • The control of spin using electrical voltages rather than magnetic fields in semiconductor nanostructures - "spintronics"
  • Holes in semiconductor nanostructures - holes are spin 3/2 particles, and have completely different magnetic properties than ordinary spin 1/2 electrons.
  • Nuclear spins in semiconductor nanostructures

Honours, Awards and Memberships: 

2014          Elected as Fellow of the American Physical Society

2013-18      Scientia Professor, University of New South Wales, Australia.

2012-15      Australian Research Council, Outstanding Researcher Award.

2009-2011  Member, Australian Research Council funding panel for Physical, Chemical and Earth Sciences

2007-2011   Australian Research Council Professorial Fellow, University of New South Wales, Australia

2007           COSMOS 'Bright Sparks' Award

2006           Australasian Science Prize

Selected Publications: 

I have published 170 papers and 4 patents, with over 3,500 citations. Selected publications include:

Quantum dots

  • Anisotropic Pauli Spin Blockade of Holes in a GaAs Double Quantum Dot
    D.Q. Wang, O. Klochan, J-T Hung, D. Culcer, I. Farrer, D.A. Ritchie, and A.R. Hamilton,
    Nano Letters 16, 7685 (2016).
     
  • Pauli Spin Blockade of Heavy Holes in a Silicon Double Quantum Dot
    Ruoyu Li, Fay E. Hudson, Andrew S. Dzurak, and Alexander R. Hamilton,
    Nano Letters 15, 7314 (2015).
     
  • Observation of the Kondo Effect in a Spin-3/2 Hole Quantum Dot, 
    O. Klochan, A. P. Micolich, A. R. Hamilton, K. Trunov, D. Reuter, and A. D. Wieck,
    Physical Review Letters 
    107, 076805 (2011).

Quantum wires

  • Detection and control of spin-orbit interactions in a GaAs hole quantum point contact,
    A. Srinivasan, D. S. Miserev, K. L. Hudson, O. Klochan, K. Muraki, Y. Hirayama, D. Reuter, A. D. Wieck, O. P. Sushkov and A. R. Hamilton,
    Physical Review Letters 118, 146801 (2017).
     
  • Using a tunable quantum wire to measure the large out-of-plane spin splitting of quasi two-dimensional holes in a GaAs nanostructure,
    A. Srinivasan, L. A. Yeoh, O. Klochan, T. P. Martin, J. C. H. Chen, A. P. Micolich, A. R. Hamilton, D. Reuter and A. D. Wieck, 
    Nano Letters 13, 148 (2013).
     
  • Compressibility Measurements of Quasi-One-Dimensional Quantum Wires,
    L.W. Smith, A. R. Hamilton, K. J. Thomas, M. Pepper, I. Farrer, J. P. Griffiths, G. A. C. Jones, and D. A. Ritchie, 
    Physical Review Letters 107, 126801 (2011).
     
  • Resistively Detected Nuclear Magnetic Resonance in n- and p-Type GaAs Quantum Point Contacts, 
    Z. K. Keane, M. C. Godfrey, J. C. H. Chen, S. Fricke, O. Klochan, A. M. Burke, A. P. Micolich, H. E. Beere, D. A. Ritchie, K. V. Trunov, D. Reuter, A. D. Wieck, and A. R. Hamilton,
    Nano Letters 11, 3147-3150 (2011).
     
  • 0.7 Structure and zero bias anomaly in ballistic hole quantum wires,
    R. Danneau, O.Klochan, W. R. Clarke, L. H. Ho, A. P. Micolich, M. Y. Simmons, A. R. Hamilton, M. Pepper and D. A. Ritchie, 
    Physical Review Letters 100, 016403 (2008).
     

Two-dimensional systems

  • High Temperature Superfluidity in Double Bilayer Graphene
    Andrea Perali, David Neilson, and Alex Hamilton,

    Physical Review Letters 110, 146803 (2013).
     
  • Impact of long- and short-range disorder on the metallic behaviour of two-dimensional systems
    W.R. Clarke, C.E. Yasin, A.R. Hamilton, A.P. Micolich, M.Y. Simmons, K. Muraki, Y. Hirayama, M. Pepper and D.A. Ritchie, 
    Nature Physics 4, 55-59 (2007).
     
  • Metallic behaviour in dilute two-dimensional hole systems,
    A.R. Hamilton, M.Y. Simmons, M. Pepper, E.H. Linfield and D.A. Ritchie,
    Phys. Rev. Lett. 87, 126802 (2001).

Atomic Scale Devices

  • Stacking of 2D electron gases in Ge probed at the atomic-level and its correlation to low temperature magnetotransport,
    G. Scappucci, W. M. Klesse, A. R. Hamilton, G. Capellini, D. L. Jaeger, M. R. Bischof, R. F. Reidy, B. P. Gorman, and M. Y. Simmons, 
    Nano Letters 12, 4953 (2012).
     
  • Fabrication of quantum wires using scanning probe microscopy,
    Frank J. Rueß, L.Oberbeck, M.Y. Simmons, K.E.J. Goh, A.R. Hamilton, T. Hallam, N.J. Curson and R.G. Clark, 
    Nano letters 4, 1969 (2004)

Quantum computing and quantum measurement

 

  • Electrically-detected magnetic resonance in ion-implanted Si:P nanostructures, 
    D. R. McCamey, H. Huebl, M. S. Brandt, W. D. Hutchison, J. C. McCallum, R. G. Clark and A. R. Hamilton, 
    Applied Physics Letters, 89 (18), 182115 (2006). 
  • Maximizing the Hilbert space for a finite number of distinguishable quantum states,
    A. D. Greentree, S. G. Schirmer, F. Green, L. C. L. Hollenberg, A. R. Hamilton, and R. G. Clark, 

    Physical Review Letters92, 097901 (2004)